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Abstract
The quantum interference in single-walled carbon nanotubes (SWNTs) in a
magnetic field parallel to their axes has been studied analytically. It is found
that the quantum conductance changes with magnetic field periodically, which is
consistent with the experimental observations. The rapid and slow conductance
oscillation periods for both armchair and zigzag SWNTs have been derived
analytically; they depend now on both the magnetic field and gate voltage in
addition to the sample length. More interestingly, metallic zigzag SWNTs in an
axial magnetic field can have slow conductance oscillation, which should not
exist without a magnetic field being applied.

(Some figures in this article are in colour only in the electronic version)

Electron transport behaviour in SWNTs is of fundamental and practical interest [1–8]. It was
found that a metallic SWNT has a very long mean free path [9], resulting in a long coherence
length of the conduction electrons even when there exist a lot of impurities or defects in the
nanotube, which permits quantum interference between forward and backward propagating
electron waves along the tube axis. Many aspects of these effects have been introduced and
studied previously [4–13]. It was reported that electron interference in a perfect-contacted
SWNT is manifest as conductance oscillations versus Fermi energy with the oscillation period
determined by the nanotube length [10, 11]. Observation of two units of quantum conductance
4e2/h indicates the ballistic motion of electrons in the nanotubes. A rapid conductance
oscillation superimposed on a slow one was also observed and ascribed to the possible disorder
effect in the nanotube [10, 11]. However, Jiang et al showed [12] analytically that both the
rapid and slow conductance oscillations are caused by the intrinsic quantum interference.
Yang et al’s numerical results [13] support the analytical conclusions.

On the other hand, theoretical analysis showed that an axial magnetic field, and thus
Aharonov–Bohm (AB) flux �, can change the electronic and transport properties of a given
nanotube [14–19]. The AB effect is caused by the interference between the electron waves
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encircling the nanotube in two opposite directions [17–19]. When threaded by a magnetic
flux �, the band structure of a nanotube was predicted to depend on �/�0, making the band
gap oscillate with a period �0, where �0 (=h/e) is the fundamental magnetic flux quantum.
Recently, an experimental measurement on the quantum conductance in a multiwalled carbon
nanotube (MWNT) [18] in an axial magnetic field was reported, in which a periodical change
of conductance with magnetic field was found. Another experiment on the magnetoresistance
measurement on an individual MWNT [19] also showed that the resistance oscillates as a
function of magnetic flux �. However, there are no experimental and theoretical researches
up to now of the magnetic field effect on quantum interference in carbon nanotubes.

In this paper we will discuss the quantum conductance oscillations in MWNT resonators
in an axial magnetic field, which could be simulated by a large diameter SWNT because
the transport properties of an MWNT can usually be considered only to be determined by
its outermost tube [18, 19]. The quantum conductance is found to change with magnetic
field periodically, which is consistent with the experimental results [18, 19]. Specifically,
the variations of both rapid and slow conductance oscillation periods with magnetic field for
armchair and metallic zigzag SWNTs are derived analytically. More interestingly, a slow
conductance oscillation is found to exist in the metallic zigzag SWNTs in an axial magnetic
field, which should not be found in them if no magnetic field is applied.

An SWNT can be defined by a two-dimensional (2D) lattice vector �R = n1�a1 + n2�a2 with
�a1, �a2 (|�a1| = |�a2| = a) the 2D unit vectors of a graphite sheet and n1, n2 integers. The SWNTs
with n1 −n2 = 3k (k an integer) are metallic, and the others are semiconductors. The SWNT is
characterized by rotation and screw operation. Based upon these symmetries, we can define its
unit cell with the unit vectors �b1 = �H and �b2 = �R/N . Here, �H = p1�a1+ p2�a2 with p1 � 0 and
the pair of integers p1 and p2 satisfy the condition n2 p1−n1 p2 = N with N the largest common
divisor of n1 and n2. A unit cell in the SWNT can be labelled by (m, l)with m and l the number
of applications of screw and rotation operation, respectively. The reciprocal lattice unit vectors
�k1 and �k2 corresponding to the real space vectors �b1 and �b2 are given, respectively, by

�k1 = 2(2n2 + n1)

3Na2
�a1 − 2(2n1 + n2)

3Na2
�a2

�k2 = −4π(2p2 + p1)

3a2
�a1 + 4π(2p1 + p2)

3a2
�a2.

(1)

Here �k1 has been divided by 2π . The wavevector for the SWNT can be introduced by
�k = k�k1 + (ν/N)�k2, with −π � k � π and ν = 0, 1, . . . , N − 1. The allowed �k values
for an SWNT lie on parallel lines with a spacing of 2π/| �R|.

In a uniform magnetic field parallel to the tubular axis, the allowed electron states can be
expressed as

�k = k�k1 + (ν/N)�k2 − (e/ch̄) �A. (2)

By choosing �A = − �B × �r/2, we obtain �k · �R = 2πη + 2πφ/φ0 with η an integer, which
indicates that the magnetic field moves the parallel lines (allowed electron states) by a distance
of (2π/| �R|)(φ/φ0) along �R. So, metallic SWNTs remain metallic at φ = Jφ0 (J an integer),
but the semiconducting SWNTs can become metallic for φ = (J ± 1

3 )φ0 [15].
So, near the Fermi surface, the energy dispersion relation for the armchair SWNT in an

axial magnetic field can be expressed as

E±
k = ±γ

√
4 cos2

(
k − Jπ

N

)
+ 4 cos

(
k − Jπ

N

)
cos

pπ

N
+ 1, (3)

where φ/φ0 = J + p with J an integer, and p is a fraction. If J = 0, 0 � p � 1/2, else
−1/2 � p � 1/2.
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Figure 1. A schematic diagram of an
armchair nanotube electron resonator.
The atoms on a highlighted ring
construct an interface.
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Figure 2. Energy bands of the armchair
nanotube near the Fermi level in an
axial magnetic field, where the black
and grey curves correspond to�/�0 =
0 and 0.4, respectively.

A Fabry–Perot electron resonator based on an armchair SWNT is shown schematically in
figure 1. The whole model system consists of a central sample with a finite length and two
semi-infinite leads (left and right), which are assumed to be made of the same kind of SWNT.
Each interface between a lead and the sample is represented by a ring of atoms, which may
be regarded as a kind of defect. We introduce on-site energies of u1, u2 to model the barrier
potential at the interface [12].

For a given energy, there are four degenerate states in the energy bands of an armchair
SWNT, and their wavevectors are k1, k ′

1, k2 and k ′
2 (see figure 2) with a relation of k ′

1 =
−k1 + 2Jπ

N and k ′
2 = −k2 + 2Jπ

N , where k1 and k2 represent the states near k1F = Jπ
N +

arccos[− 1
2 cos( pπ

N )] and k2F = Jπ
N − arccos[− 1

2 cos( pπ
N )], respectively. Under the tight-

binding approximation, the wavefunctions of the four degenerate states are given by

ψk j = 1√
2M N

M−1∑
m=0

N−1∑
l=0

eik j m(|ml; 1〉 ± eiϕ|ml; 2〉)

ψk′
j
= 1√

2M N

M−1∑
m=0

N−1∑
l=0

eik′
j m(|ml; 1〉 ± eiϕ|ml; 2〉).

(4)

Here, the + sign stands for j = 1 and the − sign for j = 2; |ml; 1〉 (|ml; 2〉) denotes the
|p⊥〉 orbital of the carbon atom labelled as 1 (2) in a unit cell of the SWNT, ϕ is their phase
difference and M is the total number of applications of screw operation.

At the zero-temperature and zero-bias limit, the incident and outgoing electrons are set
to have Fermi energy, so their wavevectors are Fermi vectors k1F and k2F, respectively. In the
SWNT resonator, their kinetic energy can be changed by the gate voltage Vg, which introduces
a potential energy of −αVg with α the gate efficiency factor. So, by using equation (3), the



2152 Y Zhang et al

0 2 310 10 20 30 40 50
0

2

φ/φ
0
=0.4 or 0.6

Vg(V)

c
0

2

A
m

p
lit

ud
e

(A
rb

itr
ar

y
u

ni
ts

)

φ/φ
0
=0.2 or 0.8

G
(2

e2 /h
)

b
0

2

φ/φ
0
=0 or 1a d

e

Frequency (V-1)

f

Figure 3. Left panel: conductance G versus Vg for the (96, 96) armchair nanotube in an axial
magnetic field with α = 0.01, u1 = 1.0 eV, u2 = 6.0 eV, and M = 1624. (a)–(c) correspond to
�/�0 = 0 (or 1), 0.2 (or 0.8), and 0.4 (or 0.6), respectively. Right panel: the Fourier frequency
analysis of the rapid conductance oscillations for the (96, 96) armchair nanotube at the gate voltage
of near 22 eV, where the curves in (d)–(f) correspond to those of (a)–(c), respectively.

wavevectors of k1 and k2 (figure 2) in the resonator are determined by

−αVg = ±γ
√

4 cos2

(
k1 − Jπ

N

)
+ 4 cos

(
k1 − Jπ

N

)
cos

pπ

N
+ 1

for k > k1F

−αVg = ±γ
√

4 cos2

(
k2 − Jπ

N

)
+ 4 cos

(
k2 − Jπ

N

)
cos

pπ

N
+ 1

for 0 > k > k2F

(5)

where γ = −2.7 eV is the nearest-neighbour hopping amplitude [20]. With the help of
equation (4), the boundary conditions are constructed through the continuity equations [1, 2]
and the equation of motion [21] at the sites on the boundary. Then, one can analytically derive
the transmission coefficient til, jr for a wave going from the i th channel on the left electrode to
the j th channel on the right electrode, from which the quantum conductance3 of the electron
resonator can be given out using Landauer–Büttiker formula [22–24]

G = (2e2/h)
2∑

i, j=1

∣∣ti j

∣∣2
. (6)

Figures 3(a), (b) and (c) give three plots of the conductance of a (96, 96) armchair SWNT
versus gate voltage (G–Vg) with u1 �= u2, in which u1 = 1.0 eV, u2 = 6.0 eV and φ/φ0 = 0

3 The expressions of til, jr are too tedious to be given out here.
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(or 1), 0.2 (or 0.8) and 0.4 (or 0.6), respectively. Here, M is taken as 1624, corresponding
to a nanotube length of about 200 nm. The parameter α is taken to be 0.01, estimated from
the capacitance of a nanotube in [12, 13]. It can be seen obviously from figure 3 that the
conductance changes with magnetic field (φ/φ0) periodically with a period of φ0.

It should be pointed out that the SWNTs are ultra-small with a typical radius of ∼1 nm,
for which the magnetic field needed to get 1φ0 flux through their cross sections should be
B ∼ 1000 T, far beyond the limit of available experimental magnetic fields. Recently, an
experiment [18] on the quantum conductance of an MWNT threaded by an axial magnetic field
was reported, in which it was found that only the outermost shell of the MWNT contributes
to the conduction, and the interaction from other inner walls is weak and can be neglected.
The outmost shell of the MWNT used in this experiment has a radius of r ≈ 15 nm, for
which a magnetic field of B ≈ 5.8 T can induce 1φ0 magnetic flux. Another experimental
measurement [19] on the magnetoresistance of an MWNT shows an oscillating resistance as a
function of magnetic field B with a period of 17.6 T, from which a radius r = 8.6 nm of the
outmost wall was inferred and proved by atomic-force microscopy. So, in figure 3, we take a
large radius SWNT (96, 96) with its r ≈ 6.5 nm to model the MWNT, and a periodical change
of the quantum conductance with magnetic field is also found with a period of 1φ0 (31 T). Our
analytical conclusion is consistent with the experimental result [18, 19] even though it is derived
from an SWNT with its radius compatible with that of the outermost shell in the MWNT.

As mentioned above, the conduction electrons in the SWNTs have a very long coherence
length (up to micrometre size), while the transmitted electron waves (k1,k2) in the nanotubes
can be reflected by the electrodes (see figure 1) one after another, inducing an interference
between the same electron waves (k1 or k2, which is the origin of rapid conductance oscillation)
and different ones (k1 and k2, which is the origin of slow conductance oscillation) [25]. Our
model system is just like a Fabry–Perot resonator. So in [12], the rapid and slow conductance
oscillations are interpreted to be an intrinsic quantum interference phenomenon, and are
ascribed to the contributions from the linear and nonlinear terms, respectively, of the energy
dispersion relations. Following the method in [12], we can also find analytically the rapid and
slow conductance oscillation periods for an armchair nanotube at φ/φ0 = J + p, which can be
approximately expressed as


V r
g =

√
3π |γ |
αM

√
1 −

(
p γπN
αVg

)2


V s
g =

√
3 |γ |
α

(
2
√

3π

M

)1/2
√

1 −
(

p γπN
αVg

)2

(
√

n − √
n − 1).

(7)

Here,
∣∣αVg

∣∣ �
∣∣p γπN

∣∣ with 2
∣∣p γπN

∣∣ being the band gap of an armchair SWNT induced by the
axial magnetic field [15]. It is clearly seen from equation (7) that the rapid and slow oscillation
periods change periodically with the magnetic flux, and both of them decrease with |p| in the

same form of
√

1 − (
(p γπN )/(αVg)

)2
. So, the rapid and slow oscillations become faster for

0 < p < 1/2 and slower for −1/2 < p < 0 with increasing magnetic field, which is also
illustrated by the Fourier frequency analysis shown in the right-hand panel of figure 3. The
rapid oscillation becomes especially severe near the band gap (i.e., αVg ≈ p γπN ) because now
the factor of (p γπN )/(αVg) is approaching 1. At a fixed magnetic field, both 
V r

g and 
V s
g

would increase with increasing Vg.
On the other hand, from equation (7), we can find that, although both the rapid and slow

conductance oscillation periods depend on magnetic field, gate voltage, efficiency factor and
sample length, their ratio is dependent only on the sample length, which is identical as in the
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case of no magnetic field [12]. So for any experiments with different magnetic fields, gate
voltages and gate efficiencies, but the same tube length, there will still be the same number of
rapid oscillation periods within a slow oscillation period.

At large enough gate voltages, e.g., |αVg| 	 |p γπN |, the rapid and slow oscillation periods
can be approximately expressed as


V r
g = 
V r0

g

[
1 − 1

2

(
p γπN
αVg

)2
]


V s
g = 
V s0

g

[
1 − 1

2

(
p γπN
αVg

)2
]
,

(8)

where 
V r0
g and 
V s0

g are their periods without magnetic field [12]. It is apparent that the
influence of magnetic field on the rapid and slow conductance periods becomes weaker when
far away from the band gap.

It is convenient to estimate the rapid and slow oscillation periods using equation (8). For
example, for the (96, 96) SWNT with M = 1624, p = 0.2 and α = 0.01, if Vg is taken to be
about 22 eV, we can get a rapid oscillation period of 
V r

g ≈ 0.8903 V, and so its frequency is
1.13 V−1, which is consistent with that of the Frouier frequency analysis shown in figure 3(e).

Now, we discuss the case of metallic zigzag SWNTs, which have two degenerate subbands
near the Fermi surface in the case of no magnetic field (see figure 4(a)), E±

k = ±2γ sin( k
2 ),

making the phase difference between the two modes to remain constant, and so no slow
conductance oscillation is found in them [12] (see figure 5(a)). However, in an axial magnetic
field, the band degeneracy is lifted (see figure 4(b)), and the energy dispersions of the two
degenerate bands become

E±
k = ±γ

√
4 cos

(
k − 3Jπ

N

)
cos

(
2π

3
+ pπ

N

)
+ 4 cos2

(π
3

− pπ

N

)
+ 1 (9a)

and

E±
k = ±γ

√
4 cos

(
k − 3Jπ

N

)
cos

(
2π

3
− pπ

N

)
+ 4 cos2

(π
3

+ pπ

N

)
+ 1 (9b)

respectively, making the two modes to have a phase difference now, and so the metallic zigzag
SWNTs can also have both rapid and slow conductance oscillations in an axial magnetic field
(see figures 5(b) and (c)).

With the help of equations (9a) and (9b), the rapid and slow quantum conductance
oscillation periods of metallic zigzag SWNTs in an axial magnetic field can be obtained as
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Figure 5. The same plots as figure 3 but for the zigzag nanotube (27, 0). Right panel: the Fourier
frequency analysis of the rapid conductance oscillations taken at a gate voltage of about 27 eV.

follows:


V r
g = π |γ |

αM

√√√√1 −
(

p
√

3πγ
N

αVg

)2


V s
g = 2N |γ |√

3M |p|α

√√√√1 −
(

p
√

3πγ
N

αVg

)2

.

(10)

From equation (10), it is clearly seen that, at a certain magnetic field, the rapid and slow

oscillations become faster near the band gap (i.e., αVg ≈ p
√

3πγ
N ), and slower with increasing

Vg. The rapid conductance oscillation period decreases with increasing magnetic field for
0 < p < 1/2, while it increases with increasing magnetic field for −1/2 < p < 0, which also
could be found from the Fourier frequency analysis shown in the right-hand panel of figure 5.

If |αVg| 	 |p
√

3πγ
N |, p

√
3πγ
N /αVg ≈ 0, the rapid and slow oscillation periods can be

simplified as


V r
g = π |γ |

αM


V s
g = 2N |γ |√

3M |p|α .
(11)

From equation (11), it is apparent that far away from the band gap, the rapid conductance
oscillation period is independent of magnetic field (p) and gate voltage (Vg), while the slow
conductance oscillation period is proportional to 1/|p| (see figures 5(b) and (c)). If p = 0, the

V s

g → ∞, recovering again that of [12] (see figure 5(a)).
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Finally, we should point out that the rapid and slow oscillation periods of carbon nanotubes
given in [12] are dependent on only the nanotube length and do not change with the gate voltage
Vg. However, in an axial magnetic field, they are dependent on both the nanotube length and
the gate voltage Vg. From this point of view, they are not a ‘true’ periodical oscillation, and
they change with Vg successively. It is seen from our analytical expressions for the rapid and
slow oscillation periods and the Fourier frequency analysis of them that for a certain range of
Vg, they can still be approximately considered as a kind of oscillation with well-defined period
described conveniently by our analytical formula.

In conclusion, we have discussed quantum interference in carbon nanotubes in an axial
magnetic field, and derived analytically the rapid and slow conductance oscillation periods
for armchair and metallic zigzag SWNTs. It is found that the quantum conductance changes
with magnetic field periodically, which is consistent with the experimental observations. Both
the rapid and slow conductance oscillation periods also change periodically with the magnetic
flux. In addition, we have found that the slow conductance oscillation can also exist in metallic
zigzag SWNTs, which was not found in them without a magnetic field being applied.
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